IACS Common Structural Rules for Bulk Carriers, January 2006

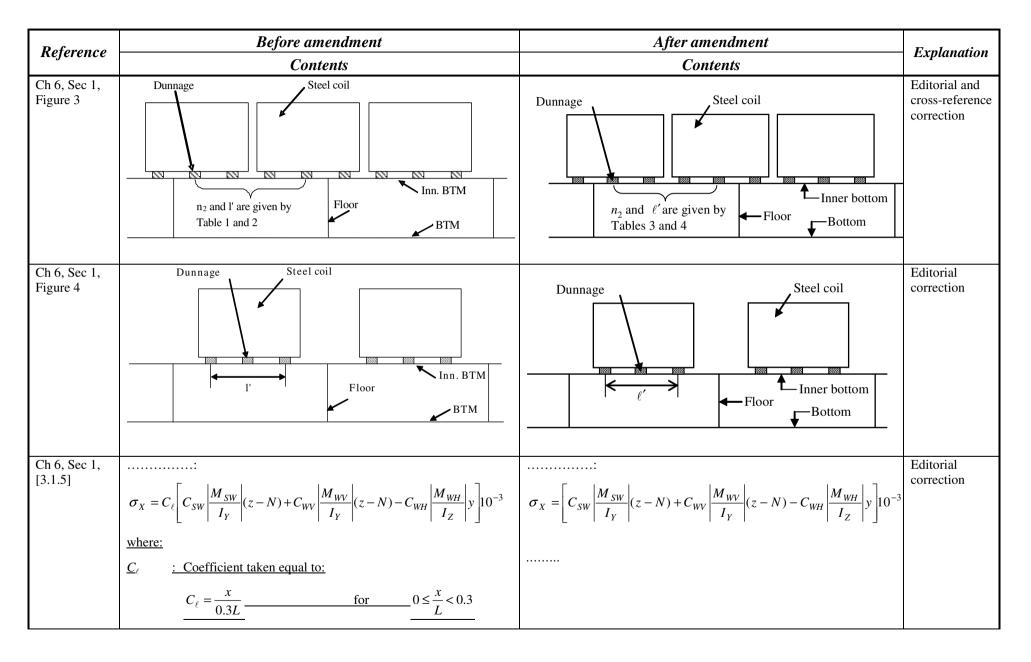
Corrigenda 1

May 2006

Deference	Before amendment Contents				A	After amendment		Explanation	
Reference				Contents			Explanation		
Ch 3, Sec 2,	The ship is	to be built at	least with the gross scantlings	s obtained by	The ship	is to be built at	t least with the gross scantlings	obtained by	Editorial
[2.1.3]	adding the	corrosion addi	tions, specified in Ch 3, Sec	3, to the net	adding t	he corrosion add	litions, specified in Ch 3, Sec	3, to the net	correction
	scantlings.	The thickness	for voluntary additions to be	added as an	scantling	gs. The thickness	s for voluntary addition is to be	added as an	
	extra.				extra.				
Ch 3, Sec 2,					Add the	following require	ement after [3.2.6]:		Addition of a
[3.2]					<u>3.2.7</u>	Check of pri	mary supporting members	s for ships	missing information
					less tha	an 150 m in ler	ngth L		1111011111111
					The net	thickness of pla	ating which constitutes primary	y supporting	
					member	s for ships less	than 150 m in length L, to	be checked	
					accordin	ng to Ch 6, Sec 4	, [2], is to be obtained by deduc	cting t _C from	
					the gross	s thickness.			
Ch 3, Sec 3, Tab 1	Corrosion a	additions for "L	Ory bulk, cargo hold"	I	Corrosio	on additions for '	"Dry bulk, cargo hold"	1	Editorial correction in
	_		Upper part ⁽⁴⁾		_		Upper part ⁽⁴⁾		the third column of Tab
		Transverse bulkhead	Lower stool sloping and top plate			Transverse bulkhead	Lower stool: sloping plate, vertical plate and top plate		1
			Other parts				Other parts		

Reference	Before amendment	After amendment	Explanation
Kejerence	Contents	Contents	Explanation
Ch 3, Sec 6,	Bilge keels are not be welded directly to the shell plating. An	Bilge keels are not be welded directly to the shell plating. An	Sentence
[6.5.2]	intermediate flat whose thickness is equal to that of the bilge strake is	intermediate flat is required on the shell plating. The ends of the	stated twice in the
	required on the shell plating. The ends of the bilge keel are to be sniped	bilge keel are to be sniped as shown in Fig.18 or rounded with large	requirement.
	as shown in Fig.18 or rounded with large radius. The ends are to be	radius. The ends are to be located in way of transverse bilge	
	located in way of transverse bilge stiffeners inside the shell plating and	stiffeners inside the shell plating and the ends of intermediate flat are	
	the ends of intermediate flat are not to be located at the block joints.	not to be located at the block joints.	
	The bilge keel and the intermediate flat are to be made of steel with the	The bilge keel and the intermediate flat are to be made of steel with	
	same yield stress as the one of the bilge strake. The bilge keel with a	the same yield stress as the one of the bilge strake. The bilge keel	
	length greater than 0.15L is to be made with the same grade of steel as	with a length greater than 0.15L is to be made with the same grade	
	the one of bilge strake.	of steel as the one of bilge strake.	
	The net thickness of the intermediate flat is to be equal to that of the	The net thickness of the intermediate flat is to be equal to that of the	
	bilge strake. However, this thickness may generally not be greater than	bilge strake. However, this thickness may generally not be greater	
	15 mm.	than 15 mm.	
	Scallops in the bilge keels are to be avoided.	Scallops in the bilge keels are to be avoided.	
Ch 4, Sec 3, Figure 1	Figure 1: Sign conventions for shear forces Q and bending moments M_{SW} , M_{WV} , \underline{M}_H	Figure 1: Sign conventions for shear forces Q and bending moments M_{SW} , M_{WV} , \underline{M}_{WH}	Editorial correction
Ch4, Sec5,	For the positive hydrodynamic pressure at the waterline (in load cases	For the positive hydrodynamic pressure at the waterline (in load	Editorial
[1.6.1]	H1, H2, F1, R1, R2 and P1), the hydrodynamic pressure P _{W,C} at the side	cases H1, H2, F2, R1, R2 and P1), the hydrodynamic pressure P _{W,C}	correction
	above waterline is given (see Fig 5), in kN/m ² , by:	at the side above waterline is given (see Fig 5), in kN/m ² , by:	
Ch4, Sec5,	For the negative hydrodynamic pressure at the waterline (in load	For the negative hydrodynamic pressure at the waterline (in load	Editorial
[1.6.2]	cases H1, H2, F2, R1, R2, and P2), the hydrodynamic pressure P _{W,C} ,	cases H1, H2, F1, R1, R2 and P2), the hydrodynamic pressure	correction
	under the waterline is given (see Fig 5), in kN/m ² , by:	$P_{W,C}$, under the waterline is given (see Fig 5), in kN/m ² , by:	

Reference	Before amendment	After amendment	Eurlanation
Kejerence	Contents	Contents	Explanation
Ch 4, Sec 6,	ρ_C : Density of the dry bulk cargo, in t/m ³ , taken equal to:	ρ_C : Density of the dry bulk cargo, in t/m ³ , taken equal to:	Editorial
Symbols	• the value given in Tab 1 for ships having a <u>length</u> of	• the value given in Tab 1 for ships having a <u>length L</u>	correction
	150 m and above	of 150 m and above	
	• the maximum density from the loading manual for	• the maximum density from the loading manual for	
	ships having a <u>length</u> less than 150 m	ships having a <u>length L</u> less than 150 m	
Ch 4, Sec 6,	where:	where:	Editorial
[1.1.2]	h_1 : Vertical distance obtained from the following formula, see Fig 2.	h_1 : Vertical distance, in m, obtained from the following formula, see Fig 2.	correction (Units for h_1 , V_{TS} and h_2)
			15
	V_{TS} : Total volume of transverse stools at bottom of transverse	V_{TS} : Total volume, in m ³ , of transverse stools at bottom of	
	bulkheads within the concerned cargo hold length ℓ_H . This	transverse bulkheads within the concerned cargo hold length	
	volume excludes the part of hopper tank passing through the	ℓ_H . This volume excludes the part of hopper tank passing	
	transverse bulkhead.	through the transverse bulkhead.	
	h_2 : Bulk cargo upper surface, depending on y, given by:	h_2 : Bulk cargo upper surface, in m, depending on y, given by:	
Ch 4, Sec 7,	1.1 Ships having a <u>length</u> less than 150 m	1.1 Ships having a <u>length L</u> less than 150 m	Editorial correction
Ch 4, Sec 7, [1.2]	1.2 Ships having a <u>length</u> of 150 m and above	1.2 Ships having a <u>length L</u> of 150 m and above	Editorial correction
Ch 4, Sec 7,	The requirements in [2] to [4] are applicable to ships having a <u>length</u> of	The requirements in [2] to [4] are applicable to ships having a	Editorial
[1.2.1]	150 m and above.	length L of 150 m and above.	correction
Ch 4, Sec 8, [1.2]	1.2 Ships equal to or greater than 150 m in length	1.2 Ships equal to or greater than 150 m in length L	Editorial correction
Ch 4, Sec 8,	2.1.2 Ships equal to or greater than 150 m in length	2.1.2 Ships equal to or greater than 150 m in length L	Editorial
[2.1.2]	In addition to [2.1.1], for BC-A, BC-B, and BC-C ships, the loading	In addition to [2.1.1], for BC-A , BC-B and BC-C ships, the loading	corrections
	manual is also to describe:	manual is also to describe:	


Reference	Before amendment	After amendment	Explanation	
Kejerence	Contents	Contents	Explanation	
Ch 4, Sec 8,	2.2.2 Ships equal to or greater than 150 m in length	2.2.2 Ships equal to or greater than 150 m in length L	Editorial	
[2.2.2]	In addition to [2.2.1], for BC-A , BC-B , and BC-C ships, the following	In addition to [2.2.1], for BC-A, BC-B and BC-C ships, the	corrections	
	loading conditions,	following loading conditions,		
Ch 4, Sec 8,	3.1.2 Ships equal to or greater than 150 m in length	3.1.2 Ships equal to or greater than 150 m in length L	Editorial	
[3.1.2]	For BC-A, BC-B, and BC-C ships, the loading instrument is	For BC-A, BC-B and BC-C ships, the loading instrument is	corrections	
Ch 4, Sec 8,	3.2.2 Ships equal to or greater than 150 m in length	3.2.2 Ships equal to or greater than 150 m in length L	Editorial	
[3.2.2]	In addition, for BC-A, BC-B, and BC-C ships, the approval	In addition, for BC-A, BC-B and BC-C ships, the approval	corrections	
Ch 4, App 1,	The requirements of this Appendix apply to ships of 150 m in length	The requirements of this Appendix apply to ships of 150 m in <u>length</u>	Editorial	
[1.1.1]	and above.	\underline{L} and above.	corrections	
Ch 4, App 1,	The maximum permissible cargo mass and the minimum required cargo	The maximum permissible cargo mass and the minimum required	Editorial	
[2.2.2]	mass corresponding to draught for loading/unloading conditions in	cargo mass corresponding to draught for loading/unloading	correction	
	harbour may be increased or decreased by 15% of the maximum	conditions in harbour may be increased or decreased by 15% of the		
	permissible mass for the cargo hold in seagoing condition. However,	maximum permissible mass at the maximum draught for the cargo		
	maximum permissible mass is in no case to be greater than the	hold in seagoing condition. However, maximum permissible mass is		
	maximum permissible cargo mass at designed maximum load draught	in no case to be greater than the maximum permissible cargo mass at		
	for each cargo hold.	designed maximum load draught for each cargo hold.		
Ch 4, App 1,	The maximum permissible cargo mass and minimum required cargo	The maximum permissible cargo mass and minimum required cargo	Editorial	
[3.2.2]	mass corresponding to draught for loading/unloading conditions in	mass corresponding to draught for loading/unloading conditions in	correction	
	harbour may be increased or decreased by 15% of the maximum	harbour may be increased or decreased by 15% of the maximum		
	permissible mass for the cargo hold. However, maximum permissible	permissible mass at the maximum draught for the cargo hold \underline{in}		
	mass is in no case to be greater than the maximum permissible cargo	seagoing condition. However, maximum permissible mass is in no		
	mass at designed maximum load draught for each cargo hold.	case to be greater than the maximum permissible cargo mass at		
		designed maximum load draught for each cargo hold.		

Defenerace	Before amendment	After amendment	Englan ation
Reference	Contents	Contents	- Explanation
Ch 5, Sec 1, [1.4.2]	• if continuous trunks or hatch coamings are taken into account in the calculation of I_Y , as specified in [1.2.2]: $V_D = \left(z_T - N\right) \left(0.9 + 0.2 \frac{Y_T}{B}\right) \ge z_D - N$	• if continuous trunks or hatch coamings are taken into account in the calculation of I_Y , as specified in [1.2.2]: $V_D = \left(z_T - N\right)\left(0.9 + 0.2\frac{y_T}{B}\right) \ge z_D - N$	Editorial correction (change "Y" in the formula into small letter)
Ch 5, Sec 1, Fig 2	Full hold Empty hold Corrected shear force Shear force obtained as specified in Ch 5, Sec 2	Full hold Empty hold $\Delta Q_{c} = p\alpha T_{1}$ Corrected shear force Shear force obtained as specified in Ch 4, Sec 3	Correction of cross-reference
Ch 5, Sec 1, [5.1.3]	$Q_P = \varepsilon \left(\frac{120}{k \mathcal{S}} \frac{\mathbf{I}_Y t}{S} + \Delta Q_C \right) - Q_{WV}$	$Q_{P} = \varepsilon \left(\frac{120}{k\delta} \frac{I_{Y}t}{S} + \Delta Q_{C} \right) - Q_{WV}$	Editorial correction (change "I" in the formula into Italic)
Ch 5, Sec 1, [5.3.3]	$Q_{P,F} = \varepsilon \left(\frac{120}{k\delta} \frac{I_Y t}{S} + \Delta Q_C\right) - Q_{WV,F}$	$Q_{P,F} = \varepsilon \left(\frac{120}{k\delta} \frac{I_{\gamma}t}{S} + \Delta Q_C \right) - Q_{WV,F}$	Editorial correction (change "I" in the formula into Italic)
Ch 5, Sec 2, [1.1.1]	The requirements of this Section apply to ships equal to or greater than 150 m in <u>length</u> .	The requirements of this Section apply to ships equal to or greater than 150 m in length L .	Editorial correction

Bulk Carrier CSR Corrigenda 1

Reference	Before amendment	After amendment	- Explanation
Kejerence	Contents	Contents	
Ch5, App1, Symbols	 I_Y: Moment of inertia, in m⁴, of the hull transverse section around its horizontal neutral axis, to be calculated according to Ch 5, Sec 1, [1.4] 	 I_Y: Moment of inertia, in m⁴, of the hull transverse section around its horizontal neutral axis, to be calculated according to Ch 5, Sec 1, [1.5.1] 	Correction of cross-reference
Ch5, App1, [2.2.3]	$Φ$: Edge function, equal to: $Φ = -1 \qquad \text{for} \qquad ε < -1$ $Φ = ε \qquad \text{for} \qquad \frac{-1 < ε < 1}{ε}$ $Φ = 1 \qquad \text{for} \qquad ε > 1$	$Φ$: Edge function, equal to: $Φ = -1 \qquad \text{for} \qquad ε < -1$ $Φ = ε \qquad \text{for} \qquad \frac{-1 \le ε \le 1}{ε > 1}$ $Φ = 1 \qquad \text{for} \qquad ε > 1$	Editorial correction
Ch 6, Sec 1, Symbols	c _a : Aspect ratio of the plate panel, equal to:	c _a : Coefficient of aspect ratio of the plate panel, equal to:	Editorial correction
Ch 6, Sec 1, [2.5.3]	This increase in net thickness is to be equal to 40%, but need not exceed 4.5 mm.	This increase in net thickness is not to be less than 40% of the net thickness of sheerstrake, but need not exceed 4.5 mm.	Editorial correction
Ch 6, Sec 1, [2.6.2]	This increase in net thickness is to be equal to 40%, but need not exceed 4.5 mm.	This increase in net thickness is not to be less than 40% of the net thickness of stringer plate, but need not exceed 4.5 mm.	Editorial correction
Ch 6, Sec 1, [2.7.2]	F : Force, in kg, taken equal to: $F = K_S \frac{W n_1 n_2}{n_3}$	F : Force, in kg, taken equal to: $F = K_S \frac{W n_1 n_2}{n_3}$	Editorial correction (comma deleted)

19 May 2006

Reference	Before amendment	After amendment	Explanation
Кејегенсе	Contents	Contents	Explanation
	$C_{\ell} = 1.0 \qquad \qquad 0.3 \le \frac{x}{L} \le 0.7$ $C_{\ell} = \frac{1}{0.3} \left(1 - \frac{x}{L} \right) \qquad \qquad 0.7 < \frac{x}{L} \le 1.0$		
Ch 6, Sec 2, [2.5.3]		$A_{sh} = \frac{5a_{\gamma}F'}{\tau_{a}\sin\varphi\sin\phi}10^{-3}$ where: $\varphi \qquad : \text{ Angle, in deg, between inner bottom plating and hopper sloping plate or inner hull plating}$ $\ell' \qquad : \text{ Distance, in m, between load points per elementary plate panel of inner bottom plate in ship length, sloping plate or inner hull plating, as defined in Ch 6, Sec 1, [2.7.2].}$	Editorial correction in formula and addition of a missing information
Ch 6, Sec 2, [3.1.5]	$\sigma_{X} = C_{\ell} \left[C_{SW} \left \frac{M_{SW}}{I_{Y}} \right (z - N) + C_{WV} \left \frac{M_{WV}}{I_{Y}} \right (z - N) - C_{WH} \left \frac{M_{WH}}{I_{Z}} \right y \right] 10^{-3}$ where: $\underline{C_{\ell}} \qquad : \text{ Coefficient taken equal to:}$ $C_{\ell} = \frac{x}{0.3L} \qquad \qquad \text{for} \qquad 0 \le \frac{x}{L} < 0.3$		Editorial correction

Reference	Before amendment	After amendment	Emplayation
Kejerence	Contents	Contents	Explanation
	$C_{\ell} = 1.0 \qquad \qquad 0.3 \le \frac{x}{L} \le 0.7$ $C_{\ell} = \frac{1}{0.3} \left(1 - \frac{x}{L} \right) \qquad \text{for} \qquad 0.7 < \frac{x}{L} \le 1.0$		
Ch 6, Sec 2,	3.2.4 Net section modulus of corrugated bulkhead of	3.2.4 Net section modulus of corrugated bulkhead of	Editorial correction
[3.2.4]	ballast hold for ships having a <u>length</u> less than 150m	ballast hold for ships having a <u>length <i>L</i></u> less than 150m	Correction
	The net section modulus w , in cm ³ , of corrugated bulkhead of ballast	The net section modulus w , in cm ³ , of corrugated bulkhead of ballast	
	hold for ships having a <u>length</u> less than 150m subjected to lateral	hold for ships having a $\underline{\text{length } L}$ less than 150m subjected to lateral	
	pressure are to be not less than the values obtained from the following	pressure are to be not less than the values obtained from the	
	formula:	following formula:	
Ch 6, Sec 2, [3.3.3]	$t_{LB} = \left(\frac{t_{LB}^2}{t_w}\right)^{1/3}$	$\underline{t'_{LB}} = \left(t_{LB}^2 t_W\right)^{1/3}$	Editorial correction
Ch 6, Sec 2, Tab 6, Note 1	α : Coefficient defined in [3.2.4]	α : Coefficient defined in [3.2.5]	Correction of cross-reference
Ch 6, Sec 3, Symbols		$\sigma_{e} : \text{ Reference stress, taken equal to:}$ $\underline{\sigma_{e}} = 0.9 \cdot E \left(\frac{t}{b'}\right)^{2}$ $\underline{b'} : \text{ shorter side of elementary plate panel}$	Correction of one parameter

Reference	Before amendment	After amendment	Explanation
Kejerence	Contents	Contents	Explanation
Ch 6, Sec 3, Tab 2	Row of buckling load case 8:	Row of buckling load case 8:	Add line in third column
	$\alpha \geq \frac{2}{3}$ $\alpha < \frac{2}{3}$ $K = \frac{1}{\alpha^2} + 2.5 + 5\alpha^2$	$\alpha \ge \frac{2}{3} K = 6.97$ $\alpha < \frac{2}{3} K = \frac{1}{\alpha^2} + 2.5 + 5\alpha^2$	
Ch 6, Sec 3,			Information
[3.1.2]	Each term of the above conditions must be less than 1.0.	Each term of the above conditions must be less than 1.0.	missing
	The reduction factors κ_x and κ_y are given in Tab 2 and/or Tab 3.	The reduction factors κ_x and κ_y are given in Tab 2 and/or Tab 3	
	The coefficients $e1$, $e2$ and $e3$ are defined in Tab 4.	The coefficients e1, e2 and e3 are defined in Tab 4. For the	
		determination of e3, κ_{y} is to be taken equal to 1 in case of	
		longitudinally framed plating and $\kappa_{\rm v}$ is to be taken equal to 1 in case	
		of transversely framed plating.	
Ch 6, Sec 3, [4.2.2]	t_a : Gross offered thickness of attached plate, in mm	t_a : Net thickness offered of attached plate, in mm	Editorial correction
Ch 6, Sec 3, [4.2.2]	A_x, A_y : Net sectional area, in mm ² , of the longitudinal or transverse	A_x, A_y : Net sectional area, in mm ² , of the longitudinal or	Editorial correction
[7.2.2]	stiffener respectively without attached plating	transverse stiffener respectively without attached plating	(line under
	$\underline{\tau_1 = \left[\tau - t\sqrt{R_{eH} E\left(\frac{m_1}{a^2} + \frac{m_2}{b^2}\right)}\right] \ge 0}$	$\tau_1 = \left[\tau - t\sqrt{R_{eH} E\left(\frac{m_1}{a^2} + \frac{m_2}{b^2}\right)}\right] \ge 0$	formula deleted)
Ch 6, Sec 3,	Longitudinal and transverse ordinary stiffeners not subjected to lateral	Longitudinal and transverse ordinary stiffeners not subjected to	Editorial
[4.2.3]	pressure are considered as complying with the requirement of [4.2.1] if	lateral pressure are considered as complying with the requirement of	correction
	their gross moments of inertia I_x and I_y , in cm ⁴ , are not less than the	[4.2.1] if their <u>net</u> moments of inertia I_x and I_y , in cm ⁴ , are not less	
	value obtained by the following formula:	than the value obtained by the following formula:	

Reference	Before amendment	After amendment	Explanation
Kejerence	Contents	Contents	Explanation
Ch 6, Sec 3, [6.1.1]	$ au_c = au_E$ for $ au_E \le \frac{R_{eH}}{2\sqrt{3}}$	$\tau_c = \tau_E \qquad \text{for } \tau_E \le \frac{R_{eH}}{2\sqrt{3}}$	Editorial corrections (1 st line
	$\tau_c = \frac{R_{eH}}{\sqrt{3}} \left(1 - \frac{R_{eH}}{4\sqrt{3}\tau_E} \right) \text{for} \tau > \frac{R_{eH}}{2\sqrt{3}}$	$\tau_c = \frac{R_{eH}}{\sqrt{3}} \left(1 - \frac{R_{eH}}{4\sqrt{3} \tau_E} \right) \text{for } \tau_E > \frac{R_{eH}}{2\sqrt{3}}$	subscript "E" into Italic, and 2 nd line: add subscript "E")
Ch 6, Sec 4,	1.2 Primary supporting members for ships less than	1.2 Primary supporting members for ships less than	Editorial
[1.2]	150 m in length	150 m in <u>length <i>L</i></u>	correction
Ch 6, Sec 4,	For primary supporting members for ships having a <u>length</u> less than 150	For primary supporting members for ships having a length L less	Editorial
[1.2.1]	m, the strength check of such members is to be carried out according to	than 150 m, the strength check of such members is to be carried out	correction
	the provisions specified in [2] and [4].	according to the provisions specified in [2] and [4].	
Ch 6, Sec 4,	1.3 Primary supporting members for ships of 150 m or	1.3 Primary supporting members for ships of 150 m	Editorial
[1.3]	more in <u>length</u>	or more in <u>length <i>L</i></u>	correction
Ch 6, Sec 4,	For primary supporting members for ships having a <u>length</u> of 150 m or	For primary supporting members for ships having a length L of 150	Editorial
[1.3.1]	more, the direct strength analysis is to be carried out according to the	m or more, the direct strength analysis is to be carried out according	correction
	provisions specified in Ch 7. In addition,	to the provisions specified in Ch 7. In addition,	
Ch 6, Sec 4,	2. Scantling of primary supporting members for ships	2. Scantling of primary supporting members for	Editorial
[2]	of less than 150 m in <u>length</u>	ships of less than 150 m in <u>length <i>L</i></u>	correction
Ch 6, Sec 4,		:	Editorial
[2.1.5]	$\sigma_X = C_{\ell} \left[C_{SW} \left \frac{M_{SW}}{I_Y} \right (z - N) + C_{WV} \left \frac{M_{WV}}{I_Y} \right (z - N) - C_{WH} \left \frac{M_{WH}}{I_Z} \right y \right] 10^{-3}$	$\sigma_X = \left[C_{SW} \left \frac{M_{SW}}{I_Y} \right (z - N) + C_{WV} \left \frac{M_{WV}}{I_Y} \right (z - N) - C_{WH} \left \frac{M_{WH}}{I_Z} \right y \right] 10^{-3}$	correction
	where:		
	\underline{C}_{ℓ} : Coefficient taken equal to:		
	$C_{\ell} = \frac{x}{0.3L} \qquad \text{for} \qquad 0 \le \frac{x}{L} < 0.3$		

Reference	Before amendment	After amendment	England with an
Kejerence	Contents	Contents	Explanation
	$C_{\ell} = 1.0 \qquad \qquad 0.3 \le \frac{x}{L} \le 0.7$ $C_{\ell} = \frac{1}{0.3} \left(1 - \frac{x}{L} \right) \qquad \text{for} \qquad 0.7 < \frac{x}{L} \le 1.0$		
Ch 6, Sec 4,			Editorial
[2.6.3]	$t_w = 1.75 \cdot \sqrt[3]{\frac{h_w \tau_a}{10 C_5} A_{sh}}$	$t_{w} = 1.75 \cdot \sqrt[3]{\frac{h_{w} \tau_{a}}{10^{4} C_{5}} A_{sh}}$	correction
	where:	where:	
Ch 6, Sec 4, [3.1.3]	A_g : Sectional area, in mm ² , of the girder panel adjacent to the stool (or transverse bulkhead, if no stool is fitted)	A_g : Net sectional area, in mm ² , of the girder panel adjacent to the stool (or transverse bulkhead, if no stool is fitted)	Editorial correction
Ch 6, Sec 4, [3.1.4]	: Pressure, in kN/m², to be obtained from the following formulae: • for dry bulk cargoes, the lesser of: $X = \frac{Z + \rho g(z_F - 0.1D_1 - h_F)}{1 + \frac{\rho}{\rho_C}(perm - 1)}$	X : Pressure, in kN/m ² , to be obtained from the following formulae: • for dry bulk cargoes, the lesser of: $X = \frac{Z + \rho g(z_F - 0.1D_1 - h_F)}{1 + \frac{\rho}{\rho_C}(perm - 1)}$	Editorial correction (Correction of comma and small letter)
	$X = Z + \rho g(z_F - 0.1D_1 - h_F perm)$ • for steel mill products: $X = \frac{Z + \rho g(z_F - 0.1D_1 - h_F)}{1 - \frac{\rho}{\rho_C}}$	$X = Z + \rho g (z_F - 0.1D_1 - h_F perm)$ • for steel mill products: $X = \frac{Z + \rho g (z_F - 0.1D_1 - h_F)}{1 - \frac{\rho}{\rho_C}}$	

Reference	Before amendment	After amendment	Explanation
Rejerence	Contents	Contents	Explanation
Ch 7, Sec 1, Fig 1	\underline{h}_f : Inner bottom flooding head is the distance, in m, measured vertically with the ship in the upright position, from the inner bottom to a level located at a distance z_F , in m, from the baseline. Bulk Carrier > 150 m Fatigue Assessment (Sec 3 & Ch 8)		Editorial and cross-reference corrections
Ch 7, Sec 2, [2.5.4]	2.5.4 Influence of local loads.	2.5.4 Influence of local loads	Editorial correction (comma deleted)
Ch7, App 2, Symbols	C: Coefficient taken equal to: $C = \frac{E}{2(1-v^2)}$	C: Coefficient taken equal to: $ \frac{\text{for 4-node buckling panel:}}{\text{for 8-node buckling panel:}} C = \frac{E}{2(1-v^2)} $ $ \frac{E}{4(1-v^2)} $	Editorial correction
Ch 7, App 2 [2.2.2]	LC 3: shear $\tau = 0.25 \sum_{i=1}^{4} \tau_i _{-}$	LC <u>5</u> : shear: $\tau = \left \frac{\tau_1 + \tau_2 + \tau_3 + \tau_4}{4} \right $	Editorial corrections

Reference	Before amendment	After amendment	Explanation
	Contents	Contents	
Ch7, App 2, [2.2.3]	2.2.3 8-node buckling panel (Figure) Stress displacement relationship for a 8-node buckling panel (compressive stresses are positive) Figure 2: 8-node buckling panel	2.2.3 8-node buckling panel Stress displacement relationship for a 8-node buckling panel (compressive stresses are positive) (Figure) Figure 2: 8-node buckling panel	Text was not in the right place
Ch7, App 2, [2.2.3], Fig 2	a 8 5 7 b 5 6 6	a 4 8 6 7 3 1 to 4: Displ. & Stress Nodes 5 & 6: Stress Nodes 5 to 8: Displacement Nodes	Editorial correction
Ch7, App 2, [2.2.3]	The term in line 15 / column 12 of the matrix is $\underline{6m/b}$. The term in line 5 / right end column is $\underline{u_2}$	The term in line 15 / column 12 of the matrix is to be replaced by $\underline{6m/a}$. The term in line 5 / right end column is to be replaced by \underline{u}_3	Editorial corrections
Ch 7, App 2 [2.2.3]	LC 1: longitudinal compression	LC 1: longitudinal compression	Editorial correction

Reference	Before amendment	After amendment	Evalgation
Kejerence	Contents	Contents	— Explanation
	$\sigma_{I} = Max \left(\frac{\sigma_{1x} + \sigma_{4x}}{2}, \frac{\sigma_{6x} + \sigma_{5x}}{2}, \frac{\sigma_{2x} + \sigma_{3x}}{2} \right)$	$\sigma_{l} = Max \left(\frac{\sigma_{1x} + \sigma_{4x}}{2}, \frac{\sigma_{6x} + \sigma_{5x}}{2}, \frac{\sigma_{2x} + \sigma_{3x}}{2} \right)$	
	$\Delta \sigma_{l} = \frac{1}{3} (\sigma_{4x} - \sigma_{1x} + \sigma_{5x} - \sigma_{6x} + \sigma_{3x} - \sigma_{2x})$	$\Delta\sigma_{l} = \frac{1}{3} \left(\sigma_{4x} - \sigma_{1x} - \sigma_{5x} + \sigma_{6x} + \sigma_{3x} - \sigma_{2x} \right)$	
	$\sigma_{x} = \sigma_{l} + 0.5 \Delta \sigma_{l} $	$\sigma_x = \sigma_l + 0.5 \Delta \sigma_l $	
	$\psi_x = 1 - \Delta \sigma_t / \sigma_x$	$\psi_x = 1 - \Delta \sigma_l / \sigma_x$	
Ch 7, App 2 [2.2.3]	LC 5: shear $\tau = \frac{1}{6} \sum_{i=1}^{6} \tau_i $	LC 5: shear $\tau = Max \left\{ \left \frac{\tau_1 + \tau_4 + \tau_5 + \tau_6}{4} \right , \left \frac{\tau_2 + \tau_3 + \tau_5 + \tau_6}{4} \right \right\}$	Editorial correction
Ch 8, Sec 2, [2.3.2]	$\sigma_{m,j} : \text{Local hot spot mean stress, in N/mm}^2, \text{ in the condition "j",}$ $\text{obtained from the following formulae:}$ $\sigma_{m,1} = \begin{cases} R_{eH} - 0.6\Delta\sigma_{W,1} & \text{for } \sigma_{res} + \sigma_{mean,1} + 0.6\Delta\sigma_{W,1} > R_{eH} \\ \sigma_{mean,1} + \sigma_{res} & \text{for } \sigma_{res} + \sigma_{mean,1} + 0.6\Delta\sigma_{W,1} \le R_{eH} \\ -0.18\Delta\sigma_{W,1} & \text{for } 0.6\Delta\sigma_{W,1} \ge R_{eH} \end{cases}$ $\sigma_{m,j(j\neq 1)} = \begin{cases} \sigma_{m,1} - \sigma_{mean,1} + \sigma_{mean,j} & \text{for } \sigma_{m,1} - \sigma_{mean,1} + \sigma_{mean,j} - 0.24\Delta\sigma_{W,j} > -R_{eH} \\ -R_{eH} + 0.24\Delta\sigma_{W,j} & \text{for } \sigma_{m,1} - \sigma_{mean,1} + \sigma_{mean,j} - 0.24\Delta\sigma_{W,j} \le -R_{eH} \end{cases}$ $\sigma_{m,j(j\neq 1)} = \begin{cases} \sigma_{m,1} - \sigma_{mean,1} + \sigma_{mean,j} & \text{for } \sigma_{m,1} - \sigma_{mean,1} + \sigma_{mean,j} - 0.24\Delta\sigma_{W,j} \le -R_{eH} \\ -0.18\Delta\sigma_{W,j} & \text{for } 0.6\Delta\sigma_{W,j} \ge R_{eH} \end{cases}$	$\sigma_{m,1} : \text{ Local hot spot mean stress, in N/mm}^2, \text{ in the condition}$ $\text{"1", obtained from the following formulae:}$ $\bullet \text{if} 0.6\Delta\sigma_{W,1} \geq 2.5R_{eH}:$ $\sigma_{m,1} = -0.18\Delta\sigma_{W,1}$ $\bullet \text{if} 0.6\Delta\sigma_{W,1} < 2.5R_{eH}:$ $\sigma_{m,1} = R_{eH} - 0.6\Delta\sigma_{W,1} \text{for}$ $0.6\Delta\sigma_{W,1} > R_{eH} - \sigma_{res} - \sigma_{mean,1}$ $\sigma_{m,1} = \sigma_{mean,1} + \sigma_{res} \text{for}$ $0.6\Delta\sigma_{W,1} \leq R_{eH} - \sigma_{res} - \sigma_{mean,1}$ $\sigma_{m,j} : \text{ Local hot spot mean stress, in N/mm}^2, \text{ in the condition "j",}$ $\text{ obtained from the following formulae:}$ $\bullet \text{if} 0.24\Delta\sigma_{W,j} \geq R_{eH}:$	Coefficient in the third condition corrected from 0.6 to 0.24 and rearrangement of the conditional statements

Reference	Before amendment	After amendment	- Explanation
Mejerence	Contents	Contents	Explanation
		$\sigma_{m, j(j \neq 1)} = -0.18\Delta\sigma_{W, j}$ • if $0.24\Delta\sigma_{W, j} < R_{eH}$: $\sigma_{m, j(j \neq 1)} = -R_{eH} + 0.24\Delta\sigma_{W, j} \qquad \text{for}$ $0.24\Delta\sigma_{W, j} > R_{eH} + \sigma_{m, 1} - \sigma_{mean, 1} + \sigma_{mean, j}$ $\sigma_{m, j(j \neq 1)} = \sigma_{m, 1} - \sigma_{mean, 1} + \sigma_{mean, j} \qquad \text{for}$ $0.24\Delta\sigma_{W, j} \leq R_{eH} + \sigma_{m, 1} - \sigma_{mean, 1} + \sigma_{mean, j}$	
Ch 8, Sec 3, [3.2.1]	$\sigma_{LW,i1(k)} = \sigma_{LW,i2(k)} = As \text{ defined in } 2.2.1$		Line under formula deleted.
Ch 9, Sec 1, Tab 2	Net thickness, in mm Intact conditions $t = 15.8c_a c_r s \sqrt{\frac{p_S + p_W}{0.7R_Y}}$ Bow flare area $t = 15.8c_a c_r s \sqrt{\frac{p_{FB}}{0.7R_Y}}$ Testing conditions $t = 15.8c_a c_r s \sqrt{\frac{p_T}{1.05R_Y}}$	Intact conditions $t = 15.8c_a c_r s \sqrt{\frac{p_S + p_W}{0.9R_Y}}$ Bow flare area $t = 15.8c_a c_r s \sqrt{\frac{p_F + p_W}{0.9R_Y}}$ Testing conditions $t = 15.8c_a c_r s \sqrt{\frac{p_F + p_W}{0.9R_Y}}$	Editorial correction in the formulae for intact conditions and bow flare area
Ch 9, Sec 1, Tab 3	Formula for net section modulus of stiffeners in bow flare area: $w = \frac{p_{FB}s\ell^2}{0.9mR_Y} 10^3$	Formula for net section modulus of stiffeners in bow flare area: $w = \frac{p_{FB}s\ell^2}{0.9mR_Y}10^3$	Editorial correction (comma)
Ch 9, Sec 1, [5.2.1]	$t = 15.8C_a C_r s \sqrt{\frac{C_s P_{SL}}{R_{eH}}}$	$t = 15.8C_a C_r s \sqrt{\frac{C_s p_{SL}}{R_{eH}}}$	Editorial correction (small letter)

Reference	Before amendment	After amendment	Euplanation
Kejerence	Contents	Contents	Explanation
Ch 9, Sec 1, [5.3.1]	$w = \frac{C_s P_{SL} s \ell^2}{16 R_{eH}} 10^3$	$w = \frac{C_s p_{SL} s \ell^2}{16 R_{eH}} 10^3$	Editorial correction (small letter)
Ch 9, Sec 1, [5.3.2]	$A = \frac{5\sqrt{3}P_{SL}s(\ell - 0.5s)}{R_{eH}\sin\phi}$	$A = \frac{5\sqrt{3}p_{SL}s(\ell - 0.5s)}{R_{eH}\sin\phi}$	Editorial correction (small letter)
Ch 9, Sec 1,	An enclosed forecastle is to be fitted on the freeboard deck.	An enclosed forecastle is to be fitted on the freeboard deck.	Correction of
[7.1.1]	The aft bulkhead of the enclosed forecastle is to be fitted in way or aft	The aft bulkhead of the enclosed forecastle is to be fitted in way or	cross-reference and correction
	of the forward bulkhead of the foremost hold, as shown in Fig 3.	aft of the forward bulkhead of the foremost hold, as shown in Fig 2.	in order to
		However, if this requirement hinders hatch cover operation, the aft	comply with IACS UR S28
		bulkhead of forecastle may be fitted forward of the forward bulkhead	Rev.2 Sept.
		of the foremost cargo hold provided the forecastle length is not less	2005
		than 7% of ship length for freeboard as specified in Ch 1, Sec 4,	
		[3.2] abaft the fore side of stem.	
Ch 9, Sec 2,	Net thickness, in mm	Net thickness, in mm	Editorial
Tab 2	Intact conditions $t = 15.8c_a c_r s \sqrt{\frac{p_S + p_W}{0.7R_Y}}$	Intact conditions $t = 15.8c_a c_r s \sqrt{\frac{p_S + p_W}{0.9R_Y}}$	correction in the formula for intact conditions
	Testing conditions $t = 15.8c_a c_r s \sqrt{\frac{p_T}{1.05R_Y}}$	Testing conditions $t = 15.8c_a c_r s \sqrt{\frac{p_T}{1.05R_Y}}$	conditions
Ch 9, Sec 5,	Hold accesses located on the weather deck are to be provided with	Hold accesses located on the weather deck are to be provided with	Editorial
[2.4.3]	watertight metallic hatch covers, unless they are protected by a closed	weathertight metallic hatch covers, unless they are protected by a	correction
	superstructure. The same applies to accesses located on the forecastle	closed superstructure. The same applies to accesses located on the	
	deck and leading directly to a dry cargo hold through a trunk.	forecastle deck and leading directly to a dry cargo hold through a	
		trunk.	
Ch 9, Sec 5,	If applicable, the still water and wave lateral pressures are	If applicable, the static and dynamic lateral pressures are	Editorial
[4.1.3] Ch 9, Sec 5,	The wave lateral pressure to be considered as acting on each hatch	The wave lateral pressure to be considered as acting on each hatch	correction Editorial
[4.2.1]	cover is to be coloulated at a point located.	cover is to be coloulated at a point legated:	correction

Reference	Before amendment	After amendment Contents	Explanation
	Contents		
	cover is to be calculated at a point located:	cover is to be calculated at a point located:	
	longitudinally, at the hatch cover mid-length	longitudinally, at the hatch cover mid-length	
	• transversely, on the longitudinal plane of symmetry of the ship	• transversely, on the longitudinal plane of symmetry of the	
	• vertically, at the top of the hatch coaming.	ship	
		vertically, at the top of the hatch <u>cover</u> .	
Ch 9, Sec 5, [6.3.2]	$w = 1.21 \frac{p_C s l^2 10^3}{m c_p R_{eH}}$	$w = 1.21 \frac{p_C s \ell^2 10^3}{m c_p R_{eH}}$	Editorial correction (<i>l</i> to <i>l</i>)
Ch 9, Sec 6, [5.4.2]	$\underline{c_{SH}}$: Coefficient which accounts for the absence of sheer, if applicable, to be taken equal to:	$\underline{C_{SH}}$: Coefficient which accounts for the absence of sheer, if applicable, to be taken equal to:	Editorial correction
	$\underline{c_{SH}}$ = 1.0 in the case of standard sheer or sheer greater than standard	$\underline{C_{SH}}$ = 1.0 in the case of standard sheer or sheer greater than standard	
	sheer	sheer	
	$\underline{c_{SH}} = 1.5$ in the case of no sheer	$\underline{C_{SH}} = 1.5$ in the case of no sheer	
Ch 10, Sec 1, Fig20	t = plate thickness in accordance with Section 14, E.3.1 [mm]	t = thickness of rudder plating, in mm	Editorial correction
Ch 10, Sec 2,			Editorial
[2.1.1]	Bulwarks are to be aligned with the beams located below or are to be	Stay and brackets of bulwarks are to be aligned with the beams	corrections
	connected to them by means of local transverse stiffeners.	located below or are to be connected to them by means of local	
	As an alternative, the lower end of the stay may be supported by a	transverse stiffeners.	
	longitudinal stiffener.	As an alternative, the lower end of the stay and bracket may be	
		supported by a longitudinal stiffener.	
Ch 10, Sec 3,	A windlass brake is to be provided having sufficient capacity to stop the	A windlass brake is to be provided having sufficient capacity to stop	Editorial
[3.7.6]	anchor and chain cable when paying out the latter with safety, in the	the anchor and chain cable when paying out the latter with safety, in	correction

Bulk Carrier CSR Corrigenda 1

Reference	Before amendment	After amendment	Explanation
	Contents	Contents	
	event of failure of the power supply	the event of failure of the power supply to the prime mover.	
	to the prime mover. Windlasses not actuated by steam are also to be	Windlasses not actuated by steam are also to be provided with a	
	provided with a non-return device.	non-return device.	
Ch 10, Sec 3,	For ships of length 80 m or more, where the height of the exposed deck	Where the height of the exposed deck in way of the	Editorial
[3.7.8]	in way of the item	item	correction
Ch 11, Sec 2,	(2) Leg length of fillet welds is made fine adjustments corresponding	(2) Leg length of fillet welds is made fine adjustments	Editorial
Table 1	to the corrosion addition to specified in Ch 3, Sec 3, Tab 1 as	corresponding to the corrosion addition $\underline{t_C}$ specified in Ch 3, Sec	correction
	follows:	3, Tab 1 as follows:	
Ch 13, Sec 2,	$\underline{t_c}$: Corrosion addition, in mm, defined in Ch 3, Sec3	$\underline{t_C}$: Corrosion addition, in mm, defined in Ch 3, Sec3	Editorial
Symbol			correction (capital letter
	$t_{voluntary_addition}$: Voluntary thickness addition; Thickness, in mm,	$t_{voluntary_addition}$: Voluntary thickness addition; Thickness, in mm,	$\operatorname{in} t_C$
	voluntarily added as the Owner's extra margin for	voluntarily added as the Owner's extra margin for	
	corrosion wastage in addition to $\underline{t_c}$	corrosion wastage in addition to $\underline{t_C}$	